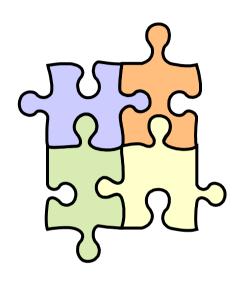


LOW HEAD HYDRO TURBINES

Joule Centre Annual Conference

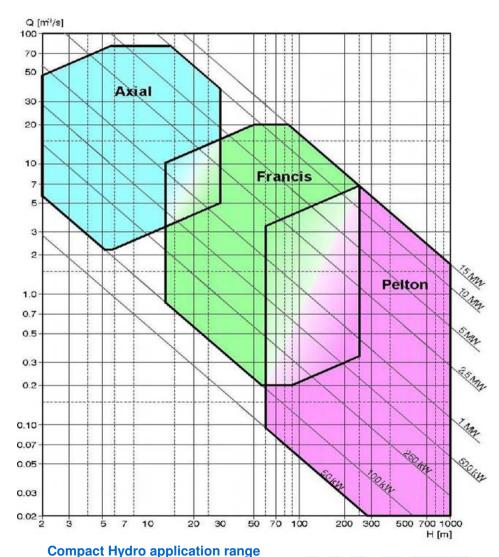

Small Hydro Power Schemes in the North West of England: Overcoming the Barriers

3rd April 2008 at Rheged Centre

Dieter Krompholz / Sales / Compact Hydro

Agenda

- Definition low head (application range)
- Special aspects of low head applications
- Risks of low head applications
- Possible turbine types for low head application
- Fish-friendly turbine concept some aspects
- Examples and references of low head applications
- Summary



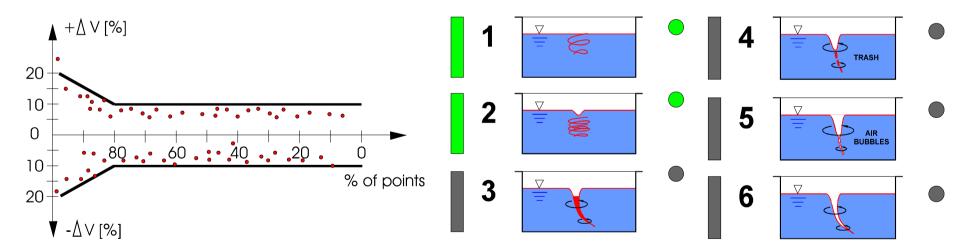
Slide No. 2

Definition - low head (application range)

- Heads approx. 2 to 35 m
- Flows approx. 0.3 to 100 m³/s
- General turbine types
 Axial turbine
 OR
 Radial turbine Francis
 (for "higher" low heads)

Special aspects of low head applications

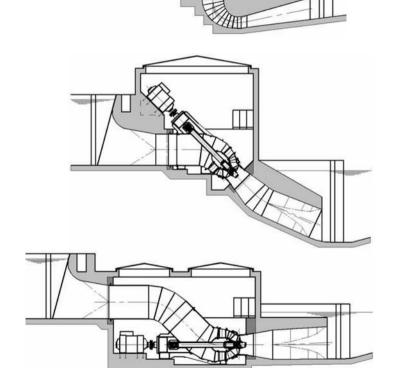
- "Flat" landscapes
- often running river plant
- very often a dam / weir needed
- "polluted" water (e.g. grass, algea, "garbage", …)
- old mill places or similar
- generally low speed turbines > "expensive" generators if direct-coupled
- ecological aspects > e.g. fish friendliness
 - Fish ladder
 - fish-friendly turbine concept

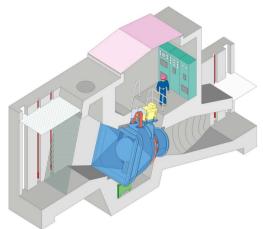


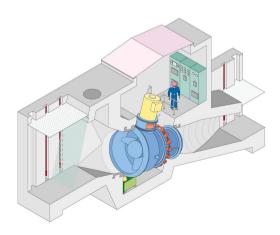
Risks of low head applications

- the lower the head the more important the design of the intake & draft tube side is
 - "incorrect" design can destroy fairly easily the net head and performance
 - how (flow, velocity) the water streams in and out the turbine is essential
 - use an experienced consultant and turbine supplier
 - investigate before concreting

Risks of low head applications

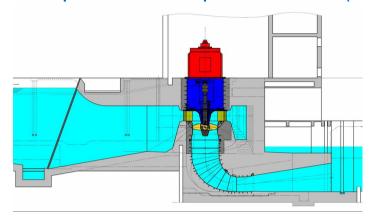

- power loss due to algae and grass
 - the smaller the runner diameter the higher the risk
 - use a good trash rake (and cleaner)
 - can be optimised with a "flush"-control

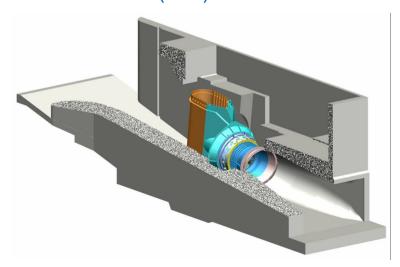

- Axial type turbines
 - heads approx. 2 to 35 m
 - flows approx. 3 to 100 m³/s
 - turbine speed varies approx. 100 ... 500 rpm (low speed)
 - double or single-regulated
 - mostly Kaplan runner (3 to 6 blades)
 - generator direct-coupled or with a gear box
 - vertical, horizontal or slant arrangement
 - different runner diameters



Belt Drive Bulb Turbine (BDB)

Bevel Gear Bulb Turbine (BGB)


 $Q \sim 6 \dots 25 \text{m}^3/\text{s} \quad H \sim 2 \dots 4 \text{m}$

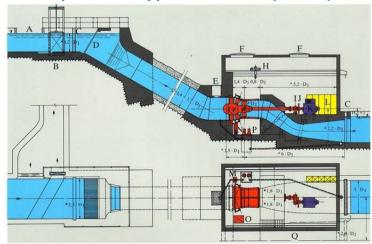

 $Q \sim 3 \dots 45 \text{m}^3/\text{s}$ $H \sim 2 \dots 12 \text{m}$

Compact Axial Kaplan Turbine (CAK)

PIT Turbine (PIT)

 $Q \sim 6 \dots 60 \text{m}^3/\text{s}$ H $\sim 2 \dots 12 \text{m}$

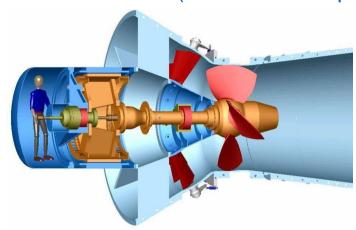
Q ~ 20..100m³/s H ~ 2 ... 12m



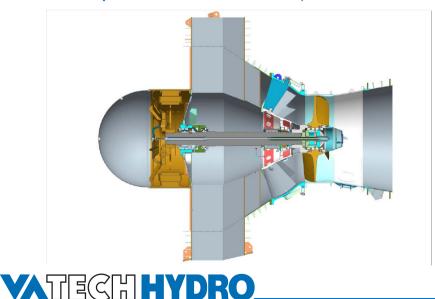
Compact Axial Turbine (CAT)

Compact S-typeTurbine (STP)

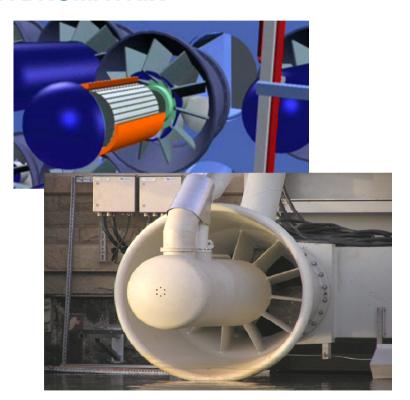
 $Q \sim 3 \dots 68 \text{m}^3/\text{s} \quad H \sim 15 \dots 35 \text{m}$

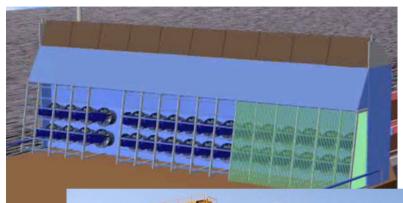


 $Q \sim 3 \dots 65 \text{m}^3/\text{s} \quad H \sim 15 \dots 25 \text{m}$

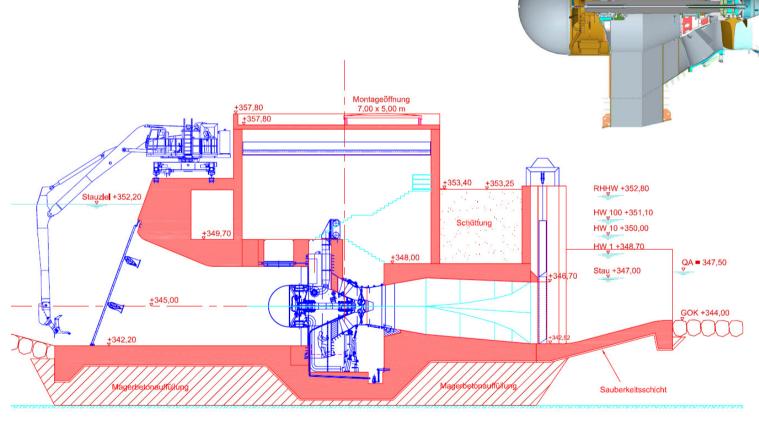


Ecobulb-turbines (with direct coupled permanent magnet generator)


Compact Bulb Turbine (with direct coupled synchronous generator)

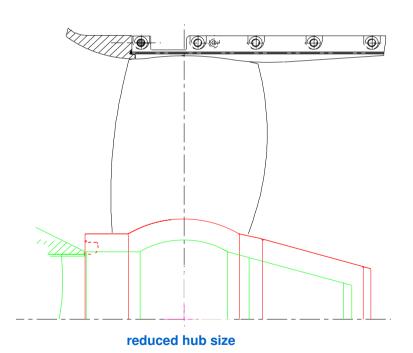


HYDROMATRIX®

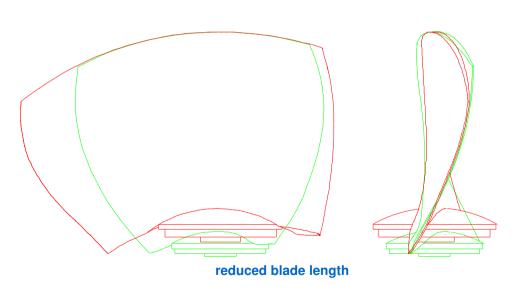

- A solution for low head sites with existing dam and weir structures
- Available head from 3 m up to 10 m
- Modules of propeller turbine units (Bulb type)

Fish-friendly turbine concept (axial) – some aspects

- Type Bulb turbine
- low speed
- "large" runner diameters



Fish-friendly turbine concept – some aspects


 reduced number of runner blades 3 instead of 4 (~50% more space)

- reduced hub size
- reduced blade length (~20% reduction)

4

reduced number of runner bladdes

Examples and references of low head applications

Plant	Country	No	Туре	Runner-Ø	Output	Head	Speed	Year
				[mm]	[MW/turb.]	[m]	[rpm]	
Penig	Germany	1	Belt Drive Bulb	1,950	0.52	2.8	165/500	1997
Niklashausen	Germany	1	Belt Drive Bulb	1,450	0.21	2.2	208/755	1998
Talmühle	Germany	1	Bevel Gear Bulb	1,200	0.30	4.2	295/750	2000
Troja	Czech Rep.	2	Bevel Gear Bulb	2,600	1.00	2.9	145/600	2007
Sitterthal	Switzerland	1	Vertical Kaplan	1,200	0.44	6.5	333.3	2005
Vafos	Norway	1	Vertical Kaplan	2,600	4.80	13.3	187.5	2005
Rott	Austria	2	PIT	2,350	2.60	10.9	205/750	2003
Gottfrieding	Germany	1	PIT	3,650	5.10	6.1	136/600	2007
Giessen	Schweiz	1	Vertical CAT	800	0.94	24.4	750	1999
Healey Falls	Canada	1	Horizontal CAT	2,350	6.30	21.5	276.9	2008
Zwingen	Switzerland	2	S-Turbine	1,400	0.17	4.2	140/750	1928
Singatalur	India	4	S-Turbine	3,100	4.76	10.0	150/750	2005
Nisramont	Belgium	2	Francis	1,086	0.61	12.37	333/1000	2008

Examples and references of low head applications

■ AND IN UNITED KINGDOM?

- since 1999: 10 different Axial turbines from 0.5 to 4.2 MW
- since 1912: 13 Francis turbines from 0.1 to 7.5 MW (heads below 35m)
- since 1906: 28 Pelton turbines from 0.6 to 106 MW (not low head)

Summary – low head turbine application

- "low" heads roughly 2 to 35m.
- large range of turbine products available (axial type and radial type)
- Often low speed turbines (approx. 100 to 500 rpm)
- low speed direct coupled generator > good but expensive
- Gear box can make a project feasible > reduction generator investment
- "Fish friendly" turbine concepts
- risks Power loss due to grass or algae
 - Incorrect Design on the intake/drafttube side "high" head loss

